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Abstract—This paper deals with some aspects of the three dimensional laminar frec convection
boundary layer near the stagnation point on a general curved isothermal surface, which is maintained
at a temperature above the ambient temperature of the fluid. Thus the stagnation point is defined
as the lowest (elliptic) point on the surface and such that the tangent plane at this point is horizontal.
Boundary-layer equations are formulated and it is shown that the flow at the stagnation point depends
on the ratio of the two principal radii of curvature at this point, the Prandtl number and the Grashof
number. These equations are solved numerically for Prandtl number 0-72 and for various values of
the ratio of the two principal radii of curvature.

For the stagnation point flow there are two limiting cases, namely the flow at the lower stagnation
line on a uniform horizontal cylinder and that at the lower stagnation point on a sphere. The numerical
solutions for the sphere and cylinder are then used to develop an approximate method of solution for
the stagnation point on a general curved surface; good agreement with the precise numerical solutions

was obtained.

NOMENCLATURE JA the pressure;
A, B, C, scalars; Pr, the Prandtl number;
a, as, unit vectors on S; r = 1(x1, X2), position vector of a point
a, b, minor and major axis of an on S;
ellipsoid; R, position vector of a point
Aila), i=1, 2, 3, mixing para- in space;
meters; Ri, Rs, principal radii of curva-
E, F, G, fundamental magnitudes ture at O;
of the first order; T, temperature;
F, vector gravitational body u == 2 1) -+ a3 ue, velocity vector parallel to
force; S;
fig b F,G, H, velocity and thermal pro- v=au -} nus, velocity vector in space;
files; vy, U2, U3, velocity vectors in the aj,
Gr = Bg (To — To)RY/+2, the Grashof num- a, and n directions;
ber; Vi, Va, Vs, dimensionless velocity
g = gny, acceleration due to gravity; components;
ik, unit vectors in the x, y, z X, ¥, Z, Cartesian co-ordinates;
directions; X1, X2, X3, curvilinear co-ordinates;
J, first curvature of the sur- X1, X2, X, dimensionless curvilinear
face o; ) co-ordinates.
k, the thermal diffusivity; Greek symbols
L, M, N, fundamental magnitudes a, square root of the ratio of
of the second order; the principal radii;
Nu, Nusselt number; B, coeflicient of cubical ex-
n, unit normal to the surface pansion;
S; v, kinematic viscosity;
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€, angle between velocity or
shear stress vectors;
1, T2, components  of  shear
stress;
o, dimensionless  tempera-
ture;
Ps density;
y = Griid X, dimensionless independent
variable.
Subscripts
o0, ambient condition;
0, stagnation point con-
dition;
D, dynamic condition;
S, surface of body;
a, surface in space parallel fo
S.

1. INTRODUCTION

MucH theoretical and experimental work has
been done on the free convection boundary
layer (see Ede [1]). The theoretical investigations
deal mainly with two dimensional boundary
layers on isothermal or non-isothermal surfaces,
where similar solutions or Blasius-type ex-
pansions of the boundary-layer equations can be
found. Several investigations of axisymmetric
free convection flows have been reported. Merk
and Prins [2] derived the general relations for the
existence of similar solutions to axisymmetric
shapes such as the cone; further solutions to the
axisymmetric flow problem have been obtained
by Braun et a/. [3] and Hering and Grosh [4].

The purpose of this investigation is to present
some information on the three dimensional free
convection boundary layer near the lower stag-
nation point on an isothermal curved surface.
The surface is maintained at a temperature above
the ambient temperature of the fluid and it is
assumed that the stagnation point is the lowest
minimum point of the surface and such that the
tangent plane at this point is horizontal. Follow-
ing reference[Sa] the three dimensional boundary-
layer equations, which govern the free convection
flow near the stagnation point, are formulated.
If the parametric lines of the curvilinear co-
ordinates on the surface are chosen to be lines
of curvature, a similar solution of the boundary-
layer equations can be found. This solution
depends on the Prandtl number, Grashof number
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and geometrically on the ratio of the two princi-
pal radii of curvature of the surface at the
stagnation point. Thus geometrical properties of
the surface appear explicitly in the equations as
distinct from the corresponding equations for
forced flow as discussed by Howarth [6]. There,
on examination of the boundary-layer equations,
the forced flow is seen to depend on the nature
of the external irrotational flow at the edge of
the boundary layer. In fact Howarth’s solution
is an exact solution of the full equations of
viscous motion in Cartesian co-ordinates.

To examine the effect of different radii of
curvature on the local flow and heat-transfer
characteristics at the stagnation point, the
similar solution of the boundary-layer equations
is evaluated numerically for Prandtl number 0-72
and for various ratios of the two principal radii
of curvature. There are two limiting cases, namely
the flow near the lower stagnation line on a
uniform horizontal cylinder and that near the
lower stagnation point on a sphere. Using the
numerical solutions for these limiting cases,
suitable velocity and thermal profiles are chosen
which contain unknown parameters. These
parameters are then found using the Pohlhausen
method [5b] and so giving approximate infor-
mation for all ratios of the two principal radii of
curvature. These approximate results for the
flow and heat-transfer characteristics are found
to be in good agreement with the precise
numerical solutions.

2. DERIVATION OF THE BOUNDARY-LAYER
EQUATIONS
Laminar free convection on a general curved
isothermal surface is governed by the following
equations:

I t
(v.V)y = »Viy — ;;Vp - , F, (nH

divy =10 )
and
v. VT = k div VT, 3

where V denotes the gradient operator in three
dimensional space. In equations (1) to (3) it has
been assumed that all physical properties of the
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fluid are independent of the temperature, and
that allowance is made for variations in the
density only in the calculation of the body force
F. Moreover, in equation (3) the viscous dissipa-
tion and work done against compression have
been omitted.
The gravitational body force F per unit
volume of fluid is
F = g, @

and the appropriate equation of state is

P = po

0= BT~ Ta), ©®)

where 8 is the coefficient of thermal expansion.
Following reference [5a] the surface of the body
S is defined by the equation

r= l'(xh xz)’ (6)

where x; and xg are orthogonal curvilinear co-
ordinates on S. Let P’(x1, Xx2), a point on S, be
the foot of a perpendicular drawn from a point
P in space, then the vector position of P is

R ==r(x1, X2) + xan(a1, x3), (7)

where n is the unit normal to .S at P’ and x3 is
the distance PP’. The co-ordinate system xi, xa,
X3 is now triply orthogonal on S but not neces-
sarily elsewhere. The boundary-layer equations
are now derived from the equations (1) to (3) in
terms of this system of co-ordinates.

The gradient operator V; for the surface S is
(see Weatherburn [7])

a; 0 as 0

Vo= hx T on ®
where
or or or
h = 59;1 , he = 8?2 , afy 25;1
ar
and azhz = 53(—2 . (9)

a1, &g are unit vectors on S which are tangential
to the two parametric curves through P’'(x1, x2).
As derived in [5a] the gradient operator for
space is

0

=Vs;+n a& + 0(x3); (10)
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and if
H =a; Hi + as Hz + n H3, an
then
d'H"'-l 8hH 8/1H
iv _h%{gﬁ( 2 1)+E>)c;( 1Hz)r +
JH3
e e (12)

Here the suffix o denotes a surface in space
parallel to S, J,, is the first curvature of the surface
o, and H is any representative vector.

Consider now a particular surface S such that
there is a minimum point on the surface at O,
which is chosen to be the origin of the orthogonal
co-ordinates x1, and xg; let the unit normal ny to
the surface at this point be in the vertical down-
ward direction. If the surface is maintained at a
temperature 75 > T then steady free convec-
tion flow will originate from this point provided
it is the lowest point on the isothermal curved
surface. In geometrical terms the lower stagna-
tion point must be the min. elliptic point of the
surface. Note that if T, > T, the upper stag-
nation point must be the max. point of the
surface.

Suppose that thermal and viscous effects are
confined to a thin boundary layer next to .S, and
for convenience put

(13)

Thus x3 and vs are small and derivatives with
respect to x3 are large compared with those with
respect to x1 and xg. From [5a] the momentum
equation (1) becomes

vV =u -+ nvg = a101 + agwz 4 nws.

(u Vs+13 )(u+nv)—v 5 (W -+ nv3)

ap 1
)~ Ry

where
(15)

The appropriate boundary-layer equations for
v1, vz and vs can now be given once F has been
resolved in the directions a;, ag, and n, i.e. in
directions parallel and normal to the surface at
the point (x1, x2, x3). Let

ng =Aa; + Baz + Chn,

F = pg No.

(16)
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where A, B and C are scalars defined by
(17)

These are evaluated by expanding a;, az and n
in the form of a Taylor series about the stag-
nation point x) == xy == 0; thus if x; and x» are

small
day
X2(,}’j‘) SERT
dxz/0

332
5&;)0 +..., (18)

A ==mng.a;, B==n¢.22, C = ng.n.

ay == (a1)o + xl(gz‘;)g +

dag

ag == (ag)o -+ xl(éﬁ)o + Xz(
and
on an ‘
n =)+ x1 (;)}a)g + X2 (é;cé)a T

Expressions for the above derivatives are given
by Weatherburn [7] as follows:

oa . L 1 oy b

ox1 )11 n- hs Oxs a2,

Ja B M n ”17 ohy

:9)(2 T n mn éxy a2,

) > (19)

daz. M 1 om

ox1 he n -+ he 8562 a1,

caz . N HI_ ohs

axz - 112 n }21 3)(1 a-

.

The quantities L, M, N are known as funda-
mental magnitudes of the second order and are
related to the quantities E, F, G, known as
fundamental magnitudes of the first order by the
relations:

E=r .1 = I

F=rp.1s,

G =r2.13 =k,

L =[rir2 ri )/{EG — F2)L/2,
M = [r1 v2 r12]/(EG — F2)172,
N == [r1 ra r2]/(EG — F)2, |

Here the suffix 1 or 2 on r denotes partial
differentiation with respect to x; or xq, i.e.

L (20)

or 73
f ==, Tig =5—.—;
1 aX]_’ 12 3x1 dxz’
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in the usual notation [ry rz ris] denotes a triple
scalar product. On using expressions (17), (18)
and (19), there results:

da 1
A =mng.{a) + x1mp. ( ‘E)U

X
day )
+ xemo-f. )
oxe/o
L 1 oy L
~ximpr|, m— - ——as) +...
h hs Ox2 0

1 oh
 6xs az o S

(2o
- ;}1 0)(1 };1)@ T T ey

in a similar fashion it follows that

M N
5= ()yx ()t @

and finally since n == a; X agz it can be shown
that

F (2D

M
+ xzno'(}“n“l"
11

C=1+.... (23)

Correct to terms of order x; and x2 the com-
ponents of the body force F in the directions of
the unit vectors aj, a2 and n, at a point x; and Xz,

arc:
e (L My (M
= pg [(,71)0 x1 -+ (E)o Xz, (ﬁ;)oxl +
N
(hz)exz’ 1}. (24)

Consider the n-component of equation (14);
the principal terms give:

ap

{i 2 iﬂi » ],V v R 25
p hgvl+h1hzvltz+h§v2 =T P8 (29

Let
P =Pp — P8 X3, (26)

where pp is the ‘dynamic’ pressure and peo g x3 is
the hydrostatic pressure in the absence of heating.
It follows from (25) that the variation in pp
across the boundary layer is small, and it is
assumed that pp is independent of x3. The a; and
ag-components of the momentum equation (14)
now yield:
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vivs Shy )
hihs Oxs

l ([JI)

fn (3x1

(01 ov1 b2 vy vy

R g ——
hl dxl hg 3X2 3.>C3
l’% oha &2y
hihs Oxq P {)x?

L M
el ()

and
v Ovs v Ovs vy v3
e v SR — L T M
h1 8x1 hz 8xg l3§X3 hlhz aX2
Vils 6&2 . 5202 1 8}')1)
hhs ox1) P ox3  hg Oxa

el Gl

respectively. As v1 and vg tend to zero at the
edge of the boundary layer, equations (27) and

r 27

c (28)

(28) imply:

Ldpp L M

hy oxy — T P28 (51)0 Yt (E)oxz

and

1 épp M N

hy oxs P28 {()1—2)0 ¥+ (11—2)0 xz}. 29)

Inserting expressions (29) in (27) and (28) and
using (5) the boundary-layer equations for the
flow in the vicinity of the stagnation point are:

0y f’_bi v2 {01 n 311 vive Ol )
B Oxy ks exa | U3oxs T hihs Oxs
1)5 ahz - ()le L 30)
ki oy~ oy T ST T
L M
()t (i) ,
and
ol B DL L L
hl 5—)(71 hz sz 135.;:; hlhz @X2
Dive 6/22 3 U3 (31
hihs 6x1 8x~ TefT—To) ¢ )
My (Y
Wiz o™ (kz o2 J

867

To within the same order of approximation (see
[5a]) the equation of continuity is

1
]21}?2 {()X (ha201) Jr - (klt‘d)f —§“ - =20, (32)
and the thermal energy equation (3) becomes:
vy T | v2 0T T dzT
?{1 éx 1 hg axg vs g.;s f‘ Ox3? (33)

Finally the boundary conditions are:

v =0 =03=0,T=Tp when x3=0,

and

—>0,09 —>0,T— >Tpas xz — > co.
(34)

In the above equations all physical properties are
to be evaluated at the ambient condition.

These equations are complicated as they in-
volve quantities related to the geometry of the
surface such as the fundamental magnitudes of
the first and second order. As the values of these
quantities are dependent on the choice of the co-
ordinate system it does not appear possible to
infer any general information from the above
equations in their present form. This difficulty
can be removed if the parametric lines
x1 = const. and xg = const. are taken to be
lines of curvature on the surface. The necessary
and sufficient conditions for the parametric lines
to be lines of curvature are

F=M=0, (3%

Moreover, since the surface is regular at the
stagnation point, it is permissible to expand
and Az as follows:

h = A
oh oh
(h1)0+xl( 1) + x 2(‘9 1) Fny
X1 X2
r (36)
hy =
oh ohs
(112)0+x1( 2) + X2 (a?é)o%‘----

P

On substitution of (35) into equations (30) and
(31) it follows that v; and ve are of the same order
as the buoyancy forces, i.e. of 0(x;) or O(xz).
Using this fact, and the expansions given in (36),
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the vprincipal terms of the boundary-layer
equations (30) to (33) are:

vy 0oy redvr dry a2y
T e i e - D AP =
hioxy  hatxe 3 dx3 ox3
L
BT —Tu) | o) ixi,  (37)
Py Ory g oy o &2py
A Ty rg, o= v . o+
h1ox1  h2Oxe Ox3 oxs
N
gB (T — Tg) G ha x2,  (38)
1 duy | dve  dvg
L T o, 39)
hl CX1 l?z (2 ¢ oX3
and
n ol v dl oT K 2T (40)
P P - g o = Lo
hOx1  ha dxe 3 0x3 axt

Here the suffix 0 on the quantities /1, hs, E,
G, L and N has been omitted. Now the principal
radii of curvature at any point on the surface are
expressed in terms of the first and second funda-
mental magnitudes by the equation:

(LN — M2) R2 + (2MF — LG — NE)R +

(EG — F?) = 0; {41
due to the co-ordinate restriction (35) it is clear
that E/L and G/N are the two principal radii of
curvature at the stagnation point.

For convenience, let

E G
Ry = and Ry =

I I 42)

and such that Ry = R;. The boundary-layer
equations are now made non-dimensional on
taking Ra, v/Rz and (Ty — T ) to be represen-
tative length, velocity and temperature scales
respectively. New dependent and independent
variables are chosen as follows:

hixi =Re X1, haxs= Ry Xe, Xx2=Rs X3,
Ra\ v v v

Uy = \/ (ﬁl) R Vi, vs = R Vo, v3 = R Vs,

43)
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and
) T--Tx
O - T() i; T’X)‘
Equations (37) o (40) become:
oV oV av 2y
A Ve o Ve o .
Mo, PV T B ox " oxy
aGX, 0, (44)
y Vs V. Ve v Vs - 2V
a Lox, + 26)1\;2+ Yok oxe
GXq O, (45)
Vi Ve d¥Vs
“oxi Toxe Toxs % (46)
and

Prlavile v S o) =29
”(“ Yoy T ex, T Vaixg) T axes GD)

the boundary conditions are:

V= Vg =Vg=0, 6 =1when
X 0,
’ (48)

Vi >0, Vo 20, @-->0as J

X3 — > 0.
Here a = +/(Rs/Ry), Pr = v/k is the Prandtl

number and Gr = g (To — Tw) R3/¥? is the
Grashof number.

3. SIMILAR SOLUTION OF THE BOUNDARY-

LAYER EQUATIONS
In terms of the variable

7 =GPV Xy, (49)

the similar solution of the non-dimensional
boundary-layer equations (44) to (47), subject to
the boundary conditions (48), is of the form:

Vi = Gri/d le', Vo = Gri/d Xy g’, }
]

Vs = — (g + of) f (50)
and @ =h, ]
where f, g and & are functions of  only, and the
dash denotes differentiation with respect to 7.

These functions satisfy the following non-linear
ordinary differential equations:

£ @ e = a(fR +ah =0, (51)
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g +(Ee+a)g’' —@E»P+hr=0, (52)
and
W +Pr(g+ o)l =0,

subject to the boundary conditions:

S0) = f"(0) = g(0) = g'(0), h(0) = 1,} (54)
f'(0) = g'(00) = h(e0) = 0.

Equations (51) to (54) define an eighth order
boundary value problem. They contain the
parameters: Pr the Prandtl number, and « the
square root of the ratio of the two principal
radii of curvature at the stagnation point. There
are two special cases:

(53)

(i) « =0, which corresponds to the two-di-
mensional free convection flow near the stag-
nation line on a uniform horizontal cylinder.
In this case f = 0, and

g +88" —(@€P+h=0, (54)
h' + Prgh’ =0, (55)
where
g(0) = g'(0) =0, n(0) = 1,
g(o0) = h(0) = 0. (56)

These equations have previously been derived by
Prins and Merk [2]. In a discussion of Her-
mann’s approximate solution [8} for the free
convection flow around a heated horizontal
cylinder, Chen {9] also notes that a similar
solution can be found for the lower stagnation
line.

(ii)) « = 1, which corresponds to the flow near
the lower stagnation point on a sphere. Here
g = f, so that

869

and
B+ 2Prgh =0,

subject to the boundary conditions (56).

(38)

Detailed numerical solutions of the above
cquations have been obtained for Pr = 0-72 and
o = 0(P1. The iterative procedure used to solve
the non-linear boundary value problem will not
be discussed as such methods have been ade-
quately described by Fox [10]; the actual
numerical integrations were carried out using
Gill’'s modification of the Runge-Kutta pro-
cedure on an I.B.M. computer. Iterations were
performed until there was no change in the
eighth decimal of the unknown initial values
f7(©0), g7(0) and A'(0); the numerical process
appeared to be quite stable. In Table 1 the
unknown characteristics of the equations,
namely f”'(0)/a, g”(0), #'(0), f(c0)/a, g(0) and
[g(ec) + af(w)] are tabulated for Pr = 0-72
and « = 0(})1. When a = 0 the notation f/a in
Table 1 is used to denote Limit f/a.

a— >0

4. APPROXIMATE SOLUTIONS OF THE
BOUNDARY-LAYER EQUATIONS

It is found that the functions f, g and & vary
most near « = 0. This feature, as will be later
discussed, indicates how rapidly the free con-
vection flow at a two dimensional stagnation
point (a = 0) is affected by the presence of
secondary flow (a > 0). Hence further infor-
mation on flows for small a is desirable. Such
information can be obtained on evaluation of
series expansions for f, g and A valid for small a.
However an approximate method of solution

g+ 2gg" — (g2 + h =0, (57) has been used which provides such information,
Table 1

a 0 } 3 e 1
f7(0)/a 1-08156 1:02881 0-929829 0-838737 0-764632
g7(0) 0-856045 0-845884 0-822382 0-794033 0-764632
—HK(0) 0-374105 0-383791 0-406247 0-433526 0-462221
f(o0)/a 1-91331 1-70652 1-34349 1-04193 0-822524
g(0) 1-33255 1-26007 1-11030 0-956906 0-822524
g(o0) + af(w0) 1-33255 1-36673 1-44618 1-54299 1-64505

h(=) 0-28074 0-28081 0-28091 0-28096 0-28098

~ g(0) + af(e0)
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and in fact provides complete information for the
range 0 < a < 1,
For convenience, let

f—=alF g-G
Equations (51) to (§3) become:
F" +(G+ 2 F)F" — a2 (F')2
H =0,
G"+H{(G+2FG" — (G + H =0,

and

and h— H. {59)

(60)

H" + Pr(aF+ G) H =0,
where
FO) = F' @) = GO) = G0) =0, )
HO) =1, > (61)
F/(00) = G'(o0) = H(c0) = 0. )

Let the solutions of (60) and (61) be denoted by
Fy, Go, Hg, and Fy; Gy, Hy when ¢ =0 and 1

Approximations to F, G and H are now chosen
by writing these as a linear combination of the
exact numerical solutions for a = 0 and 1. Thus

F = Fo + Ai(a) (F1 — Fy),
G = Go + Az(a) (G1 — Go),
H = Hy + Ag(a) (H1 — Ho_).

Here the unknown mixing parameters 4;(a) are
such that 4;(0) =0 and Ai(1) =1fori=1, 2
and 3. Thus expressions (62) are correct at both
limits, a desirable characteristic. The A4;{(a) for
0 £ a<1 are evaluated using Pohlhausen’s
method (see reference [5b]).

Integrating each equation in (60) between the
limits » =0 and oo and using the boundary
conditions (61) yields;

(62)

F'©) — | Hdy + 26 | (F'P dy +
Y 1]
[ G Fdy=0,
0
GO —f Hdn+2]Gdy+ b+ 63
4] ]

ot [ G F'dn =0,
Q

H'(0) + P [ (a2 F' + G') Hdy — 0.
0
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Physically the first two equations can be in-
terpreted as the integral momentum equations
for the components of velocity in the x; and x2
directions; the third equation is the heat-balance
integral of the thermal boundary layer. On
substitution of expressions (62) in (63) three
non-linear simultaneous algebraic equations are
obtained for the A4:(a), i = 1, 2 and 3. As these
equations are rather lengthy they will not be
stated. However certain integrals occurring in

these equations, such as | G, H) d, cannot be

0

expressed in terms of those obtained from (63) by
letting « =— 0 or 1. Such integrals were evaluated
by incorporating them as part of the Runge-
Kutta integration of the system (60) and (61) for
a =0 and 1, i.e. once the initial values £, (0),
G;'(0) and H;(0) for i =1 and 2 are known.
The simultaneous equations were solved using
the Choleski method together with a Gauss~
Seidel iterative scheme for the treatment of the
quadratic terms involving 4i(a), As2(e) and
As(a).

The mixing parameters A4;(a) and the corre-
sponding results for F”(0), G”'(0) and etc. are
given in Table 2 for o = 0(0-05)1-0 and
Pr = 0-72; these results are also given graphically
in Fig. 1. When a« = ,4 and § it is seen on
comparing Tables 1 and 2 that the approximate
results for the derivatives F'(0), G"”(0) and
H'(0) are in error by less than } per cent; the
asymptotic values F(ec), G(oc), [a2F(o0) -+ G(0)]
are found to be in error by less than 3 per cent.
Therefore the approximate method is sufficiently
accurate for all practical purposes and has the
advantage that detailed reliable information on
the stagnation point flow on a general curved
surface is relatively easy to obtain.

5. RESULTS AND DISCUSSION
Results of practical interest are the shear
stress and heat transfer across the surface. On
the basis of the boundary-layer approximations
the shearing stress or skin friction across the
surface has components:

6171 5[72 .
TL=pf, " and 72 == |- , (64)
GX3/ xy=0 UX3) z,=0

in the directions of x; and x» increasing. 1f R.
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Table 2
a A4, A As F”(0) G"(0) —H'(0) F(c0) G(0)  G(0)+a?F(o0)

0-00 0-0000 0-0000 0-0000 1-0816 0-8560 0-3741 19133 1-3326 1-3326
0-05 0-0080 0-0052 0-0053 1-:0790 0-8556 0-:3745 1-9046 1-3299 1-3347
0-10 0-0313 0-0203 0-0209 1-0717 0-8542 0-3759 1-8792 1-3222 1-3410
0-15 0-0680 0-0449 0-0459 1-0600 0-8519 0-3782 1-8391 1-3097 1-3511
0-20 0-1157 0-0776 0-0795 1-0449 0-8489 0-3811 1-7871 1-2930 1-3645
0-25 0-1714 0-1175 0-1201 1-0272 0-8453 0-3847 1-7263 1-2726 1-3805
0-30 0-2325 0-1631 0-1665 1-0079 0-8411 0-3888 1-6597 1-2494 1-3988
0-35 0-2966 0-2133 0-2176 09876 0-8365 0-3933 1-5898 1-2237 1-4185
0-40 0-3618 0-2672 0-2722 0-9669 0-8316 0-3981 1-5186 1-1963 1-4393
0-45 0-4269 0-3239 0-3294 0-9463 0-8264 0-4031 1-4477 1-1674 1-4606
0-50 0-4907 0-3826 0-3886 0-9260 0-8211 0-4083 1-3780 1-1374 1-4820
0-55 0-5527 0-4427 0-4490 0-9064 0-8156 0-4137 1-3105 1-1068 1-5032
0-60 0-6124 0-5039 0-5104 0-8875 0-8100 0-4191 1-2453 1-0756 1-5239
0-65 0-6696 0-5657 0-5722 0-8694 0-8043 0-4245 1-1830 1-0440 1-5438
0-70 0-7242 0-6279 0-6341 0-8521 0-7986 0-4300 1-1234 1-0123 1-5628
0-75 0-7761 0-6903 0-6961 0-8356 0-7930 0-4354 1-0667 0-9805 1-5805
0-80 0-8256 0-7527 0-7578 0-8199 0-7872 0-4409 1-0127 0-9487 1-5956
0-85 0-8726 0-8149 0-8191 0-8050 0-7816 0-4463 0-9615 0-9169 1-6116
090 09172 0-8769 0-8800 0-7909 0-7759 0-4516 09128 0-8853 1-6247
095 09596 0-9386 0-9403 0-7774 0-7702 0-4570 0-8665 0-8538 1-6358
1-00 1-0000 1-0000 1-:0000 0-7646 0-7646 0-4622 0-8225 0-8225 1-6450

20 | 4 051

fio)/a
18 | 4 049
o
16 F T 4 0a7
//

glw) + afe

/e

08

06

aile
VR

1

4 oran

039

# ()

FiG. 1. Flow and heat-transfer characteristics for a stagnation point on a general curved surface.



872

is chosen as the representative length the heat
transfer at the stagnation point may be expressed
in terms of the local Nusselt number

N R2 ( c’)T)
Uy = e N e .
0 (T() — Too) 0X3 z3=0

Thus on using (43), (49) and (50) it follows that
at the stagnation point

2
=P w2 Gr (”;jl)
H 2

(65)

f ”(0)

a

() g0, ©0

TO ==

and
ug = Gri/4 i'(0). (67)

Values of f’(0)/a, g”’(0) and A'(0) are given in
Tables 1 and 2 for Pr = 0-72.

Velocity profiles

As o increases from zero the maximum
velocity in the xo-direction decreases slowly
whilst there is a rapid increase in the maximum
velocity in the xi-direction, the two components
of velocity becoming equal when a = 1. Thus the
secondary flow (or xj-component of flow),
which is due to curvature in the xj-direction, has
little influence on the main xg-component of
flow. However the occurrence of secondary flow
when a > 0 has an observable influence on the
direction of the velocity vector in the boundary
layer. For example the angle between the
velocity vector at the surface and at the edge of

the boundary layer is
€ == tan—1! [(hl Al) a f(oo)]
) ha x2) — g'(o0)

ant (7)) co]: ©
by L’Hopital’s rule o
e = tan] [(%2) Jg{:"((z))]

62 23]

and thus represents the angle between the
resultant shear stress on S and at the edge of the
boundary layer. Examination of the asymptotic

G. POOTS

form of the solution of the system of differential
equations (51) to (53) leads to the result

Linit gy =
and so
e = tan—1 [az h x}] —
hz X9
a2 hy x1 { f'(0)/a
N Pl et
tan [hz 2 ( 270) )] (70)

From Table 1 the maximum changes in direc-
tion were evaluated to be 6-7°, 5-6°, 3-6°, 1-5°
and 0° for a = 4/(Re/R1) = O0(P1 respect-
ively; the first four of these occurred at stations
a? (hix1/hex2) = 0-89,0-91, 0:94 and 0-97 respec-
tively.

Heat transfer

As secondary flow increases with increasing
a there is an increase in the inflow velocity
vs = — v/Rgs [af(o0) + g(o0)] at the edge of the
boundary layer (see Fig. 1). An increase in in-
flow appears to produce a slight decrease in
both the thermal and fluid boundary-layer
thicknesses, together with an increase in the
local Nusseltnumber Nup = GrV/4h’(0) (see Fig. 1).
Actually maximum heat transfer occurs when
a = 1, i.e. at the lower stagnation point on a
sphere. Again from Table 1 it is seen that the
modulus of the ratio

Inflow velocity component at the edge of the

Local Nusselt number at the stagnation point
boundary layer )

R
— 02809 = Gria (71
approximately, when P =0-72 and 0 < a <{ 1.
Thus once a representative length Ry has been
chosen the above ratio is independent of R;, as
it is seen to be nearly independent of the curva-

ture ratio
—_ R2
a = Rl .

From an experimental viewpoint (71) might be
exploited as Nug could be evaluated by measur-
ing the inflow velocity component for Rs and
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(To —{Tw) fixed, and for various values of Ri.
A suitable body for experimentation might be
an anchor ring maintained at constant tempera-
ture, and whose axis of revolution is horizontal.

Finally as an illustration of the above theory
consider the geometrical information required to
discuss the local stagnation point free con-
vection flow on an ellipsoid of revolution whose
equation is

X2y g2

- (72)

and whose axis of revolution is horizontal. If
Ts > T «» the lower stagnation point is situated
at (0, —a, 0). Orthogonal parametric co-
ordinates are chosen such that (72) is replaced
by

I = g CoS X1 Sin Xa 1 — @ €OS X1 COS X2 j —
(73)

where i, j and k are unit vectors in the directions
of the Cartesian co-ordinates x, y and z re-
spectively; x1 = xg2 =0 corresponds to the
lower stagnation point. The evaluation of (20)
yields:

E = a?sin® x1 + b2 cos? x1, 1

F=0

— bsin x1 k,

G = a2 cos? xq,
(EG FA)\2L, — g%b cos x1,
(EG — Fl2pM =0,
(EG — F2)V2N = g2p cos? x1. J

As F and M both vanish the chosen parametric
lines x1 == const. and x2 = const. are in fact the
lines of curvature on the surface; at x; = x2 =0,
LN > M? and so the stagnation point is an
elliptic point of the surface. At the stagnation
point

L (74)
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E=mR=00 F=0, G=K8=qdad,
L=a, M=0, N=ua (75
and thus
b2
Ra=a and R; = L (76)
giving
R b
a_/\/(R—l)—;l’ an

a = 0 and 1 correspond to a uniform horizontal
cylinder and a sphere respectively.
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Résumé—Cet article a trait 2 quelques aspects de la couche limite laminaire tridimensionnelle avec
convection libre prés du point d’arrét sur une surface courbe générale isotherme, qui est maintenue
a une température au-dessus de la température ambiante du fluide. Ainsi, le point d’arrét est défini
comme le point (elliptique) le plus bas sur la surface et tel que le plan tangent en ce point soit horizontal.
Les équations de la couche limite sont formulées et on montre que ’écoulement au point d’arrét
dépend du rapport des deux rayons de courbure principaux en ce point, du nombre de Prandtl et du
nombre de Grashof. Ces équations sont résolues numériquement pour un nombre de Prandtl de 0,72 et
pour différentes valeurs du rapport des deux rayons de courbure principaux.

Pour le point d’arrét, il y a deux cas limites, c’est-a-dire I’écoulement 2 la ligne d’arrét la plus basse
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sur un cylindre horizontal uniforme et celui au point d’arrét le plus bas sur une sphere. Les solutions

numériques pour la sphére et le cylindre sont alors utilisées pour développer une méthode approchée

de solution pour le point d’arrét sur une surface courbe générale; on a obtenu un bon accord avec
les solutions numériques exactes.

Zusammenfassung—Die Arbeit behandelt einige Gesichtspunkte der dreidimensionalen Grenzschicht
bei laminarer freier Konvektion nahe dem Staupunkt an einer aligemein gekriimmten, isothermen
Oberfliche, deren Temperatur iiber jener der Umgebung gehalten wird. Dabei ist der Staupunkt als
der tiefste (elliptische) Punkt der Oberfliche definiert, so dass die Tangentenebene an diesem Punkt
horizontal ist. Grenzschichtgleichungen werden aufgestellt und es wird gezeigt, dass die Stromung
am Staupunkt, vom Verhiltnis der zwei Hauptkriimmungsradien an diesem Punkt, der Prandtl-Zahl
und der Grashof-Zahl abhingt. Diese Gleichungen werden numerisch gelost fiir die Prandtl-Zaht 0,72
und fiir verschiedene Verhiltniswerte der beiden Hauptkriimmungsradien.

Fiir die Staupunktsstromung existieren zwei Grenzfille-ndmlich die Stromung an der unteren
Staulinie eines gleichférmigen, waagerechten Zylinders und die Stromung am unteren Staupunkt
einer Kugel. Die numerischen Lésungen fiir Kugel und Zylinder konnen dazu dienen, eine angenéherte
Losungsmethode fiir den Staupunkt einer allgemein gekriimmten Oberfliche zu entwickeln; gute

Ubereinstimmung mit den genauen numerischen Losungen wird erreicht.

Anporanua—/lannasd cTaThs PACCMATPHBAET HEROTOPHIE ACHEKRTLI TPEXMEpPHOro JTaMHHap-
HOTO HOTPAHHYHOTO CJIOH NPH CBOGOAHON KOHBeKIMM BOIBI KPUTHHECKO TOYRA HA TPOIN-
BOJILHOM KPUBOJIMHENHHOIl U30TEPMUMECKO MOBEPXHOCTH, KOTOPAA TO[IePHKUBACTCA lIPH
TeMIepaType, BB TeMepaTyphl okymamoowell sagiroctn. Takum 00pasoM, KPUTHYECRAS
TOYKA ONpENEIAeTCA KAK caMad HIDKHAA (JUINNTHYeCKAasA) TOYKA HA MOBEPXHOCTH TAK, YTO
KACcaTeIbHAA IJIOCKOCTh B ATOM TOUKe ABJIAETCH TOPH3OHTAILHOI. POpMyIUPYIOTCS ypaBie-
HUEST TOTpaHnYHOro caod. [Jokasano, 4To 10TOK B KPUTHYECKON TOYKE 3aBUCUT OT OTHOIICHUS
ABYX OCHOBHHIX PaJiMyCOB KPHUBUBHHL B 0TOIf Tounke, uucaa [Ipamprias u umcia Ipacroda.
OTH ypaBHeHUA PeNUIAloTCA YHCIeHHo s Pr = 0,72 1 V1A pasiiuvHLIX 3HAYeHUit OTHOIIEHUHA
ABYX OCHOBHHIX DPAUYyCOB KPHBH3HBL.

JL1A TIOTOKA B KPUTUYECKON TOYKE CYIUECTBYeT ABA IpefesbHBIX CJY4ad, a UMEeHHO ! [I0OTOK
B HIDKHEW KPHTUYECKOH TOYKE HA OJHOPOTHOM FOPU3OHTAILHOM HUIMHAPE U MTOTOK B HUMHEH
KPUTUYECKOI TOYKE HA lIape. 3arTeM, YHCICHILIC PEIIeHAA JUIA LIApa H HMIIHHAPA HCMO-
NB3YIOTCA JIIA TIOCTPOEHHA TPUOIIKEHHOTO MeT0Ja PelleNMA KPATHYeCKOH TOYKH HA TIPO-
H3BNILHON KpHBOMWHeiTHo nmoBepxuoctn. Ilomydeno xopoinec corfacoBanne ¢ TOTHBIMI

THETSHHBIM I DOTeHAM I,



