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Abstract-This paper deals with some aspects of the three dimensional laminar fret convection 
boundary layer near the stagnation point on a general curved isothermal surface, which is maintained 
at a temperature above the ambient temperature of the fluid. Thus the stagnation point is defined 
as the lowest (elliptic) point on the surface and such that the tangent plane at this point is horizontal. 
Boundary-layer equations are formulated and it is shown that the flow at the stagnation point depends 
on the ratio of the two principal radii of curvature at this point, the Prandtl number and the Grashof 
number. These equations are solved numerically for Prandtl number O-72 and for various values of 
the ratio of the two principal radii of curvature. 

For the stagnation point flow there are two limiting cases, namely the flow at the lower stagnation 
line on a uniform horizontal cylinder and that at the lower stagnation point on a sphere. The numerical 
solutions for the sphere and cylinder are then used to develop an approximate method of solution for 
the stagnation point on a general curved surface; good agreement with the precise numerical solutions 

was obtained. 

NOMENCLATUEE 

A, 4 C, scalars ; 

a, 82, unit vectors on S; 
l-4 b, minor and major axis of an 

ellipsoid; 
-464 i = I, 2, 3, mixing para- 

meters; 
E, F, G, fundamental magnitudes 

of the first order; 
P, vector gravitational body 

force ; 
_A g, k F, G, H, velocity and thermat pro- 

files ; 
Gr = pg (TO - 7”)Ri/v2, the Grashof nutn- 

ber; 
g = gno, acceleration due to gravity; 
4 j, k, unit vectors in the X, y, z 

directions; 
Jr first curvature of the sur- 

face a; 
k, the thermal diffusivity; 
L M, N, fundamental magnitudes 

of the second order; 
=4 Nusselt number; 
n, unit normal to the surface 

s; 

PY 
Pr, 
r = r(xl, x2), 

R, 

RI, Rz, 

u = al ul + a2 UZ, 

v = u + n u3, 

Cl, 02, 03, 

Yl, v2, v3, 

x, Y, % 
Xl, x2, x3, 

Xl, x2, x3, 

Greek symbols 
a, 

the pressure; 
the Prandtl number; 
position vector of a point 
on S; 
position vector of a point 
in space; 
principal radii of curva- 
ture at 0; 
temperature; 
velocity vector parallel to 
s; 
velocity vector in space; 
velocity vectors in the al, 
a2 and n directions; 
dimensionless velocity 
components; 
Cartesian co-ordinates; 
curvilinear co-ordinates; 
dimensionless curvilinear 
co-ordinates. 

square root of the ratio of 
the principal radii; 
coefficient of cubical ex- 
pansion; 
kinematic viscosity; 
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t-9 

71, m, 

0, 

PY 
v ..- &1*4X3, 

Subscripts 
m‘, 
(1, 

D, 
s, 
IJ, 

angle between velocity or 
shear stress vectors; 
components of shear 
stress; 
dimensionless tempera- 
ture; 
density; 
dimensionless independent 
variable. 

ambient condition; 
stagnation point con- 
dition; 
dynamic condition; 
surface of body; 
surface in space paralfel to 
s. 

1. INTRODUCTION 

MIJCX theoretical and experimental work has 
been done on the free convection boundary 
layer (see Ede [l]). The theoretical investigations 
deal mainly with two dimensional boundary 
layers on isothermal or non-isothermal surfaces, 
where similar solutions or Blasius-type ex- 
pansions of the boundary-layer equations can be 
found. Several investigations of axisymmetric 
free convection flows have been reported. Merk 
and &ins [Z] derived the general relations for the 
existence of similar solutions to axisymmetric 
shapes such as the cone; further solutions to the 
axisymmetric flow problem have been obtained 
by Braun et al. [3] and Hering and Grosh [4]. 

The purpose of this investigation is to present 
some information on the three dimensional free 
convection boundary layer near the lower stag- 
nation point on an isothermal curved surface. 
The surface is maintained at a temperature above 
the ambient temperature of the fluid and it is 
assumed that the stagnation point is the lowest 
minimum point of the surface and such that the 
tangent plane at this point is horizontal. Foflow- 
ing reference [5a] the three dimensional boundary- 
layer equations, which govern the free convection 
flow near the stagnation point, are formulated. 
If the parametric lines of the curvilinear co- 
ordinates on the surface are chosen to be lines 
of curvature, a similar solution of the boundary- 
layer equations can be found. This solution 
depends on the Prandtl number, Grashof number 

and geometrically on the ratio of the two princi- 
pal radii of curvature of the surface at the 
stagnation point. Thus geometrical properties of 
the surface appear explicitly in the equations as 
distinct from the corresponding equations fat 
forced flow as discussed by Howarth [6]. There, 
on examination of the boundary-layer equations, 
the forced flow is seen to depend on the nature 
of the external it-rotational flow at the edge of 
the boundary layer. In fact Howarth’s solution 
is an exact solution of the full equations of 
viscous motion in Cartesian co-ordinates. 

To examine the effect of different radii of 
curvature on the local flow and heat-transfer 
characteristics at the stagnation point, the 
similar solution of the boundary-layer equations 
is evaluated numerically for Prandtl number 0.72 
and for various ratios of the two principal radii 
ofcurvature. There are two limiting cases, namely 
the flow near the lower stagnation line on a 
uniform horizontal cylinder and that near the 
lower stagnation point on a sphere. Using the 
numerical solutions for these limiting cases, 
suitable velocity and thermal profiles are chosen 
which contain unknown parameters. These 
parameters are then found using the Pohlhausen 
method [5b] and so giving approximate infor- 
mation for all ratios of the two principal radii of 
curvature. These approximate results for the 
flow and heat-transfer characteristics are found 
to be in good agreement with the precise 
numerical solutions. 

2. DERIVATION OF THE BOUNDARY-LAYER 

EQUATIONS 

Laminar free convection on a general curved 
isothermal surface is governed by the following 
equations : 

(V.V)Y -= VW - !p + LB-, (1) 

div v = 0 (2) 

and 

(v . V)T = k div VT, (3) 

where V denotes the gradient operator in three 
dimensional space. In equations (1) to (3) it has 
been assumed that all physical properties of the 
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and if fluid are independent of the temperature, and 
that allowance is made for variations in the 
density only in the calculation of the body force 
F. Moreover, in equation (3) the viscous dissipa- 
tion and work done against compression have 
been omitted. 

then 

H = al HI + a2 HZ + n H3, 

The gravitational body force F per unit 
volume of fluid is 

F = pg, (4) 

and the appropriate equation of state is 

R H3 
-- J, Ha. 

8x3 
(12) 

where /I is the coefficient of thermal expansion. 
Following reference [5a] the surface of the body 

S is defined by the equation 

r = r(xi, x2), (6) 

where xi and x2 are orthogonal curvilinear co- 
ordinates on S. Let P’(xI, x2), a point on S, be 
the foot of a perpendicular drawn from a point 
P in space, then the vector position of P is 

P - Pm ~~~ = -_B(T - Tm), 
PC0 

Here the suffix CJ denotes a surface in space 
parallel to S, J,, is the first curvature of the surface 
(T, and H is any representative vector. 

Consider now a particular surface S such that 
there is a minimum point on the surface at 0, 
which is chosen to be the origin of the orthogonal 
co-ordinates xl, and XZ; let the unit normal no to 
the surface at this point be in the vertical down- 
ward direction. If the surface is maintained at a 
temperature Ts > T, then steady free convec- 
tion flow will originate from this point provided 
it is the lowest point on the isothermal curved 
surface. In geometrical terms the lower stagna- 
tion point must be the min. elliptic point of the 
surface. Note that if Ts > T, the upper stag- 
nation point must be the max. point of the 
surface. 

R = r(x1, x2) + xs n(nl, XZ), (7) 

where n is the unit normal to S at P’ and x3 is 
the distance PP’. The co-ordinate system xl, x2, 
xs is now triply orthogonal on S but not neces- 
sarily elsewhere. The boundary-layer equations 
are now derived from the equations (1) to (3) in 
terms of this system of co-ordinates. 

The gradient operator V, for the surface S is 
(see Weatherburn [7]) 

Suppose that thermal and viscous effects are 
confined to a thin boundary layer next to S, and 
for convenience put 

where 

v = u + nv3 = alvl + a2v2 + nv3. (13) 

Thus x3 and us are small and derivatives with 
respect to xs are large compared with those with 
respect to x1 and x2. From [5a] the momentum 
equation (1) becomes 

~.V,+v3~,& (u+nv3)=-y2(u+nv3) 
1 

, I 

3 

ar 
and azha = --- ; (9) 

- -i V,p + n a$3 - -t F, 

3x2 
P 

(14) 

al, a2 are unit vectors on S which are tangential where 

to the two parametric curves through P’(xI, x2). 
F = pgno. (15) 

As derived in [5a] the gradient operator for The appropriate boundary-layer equations for 
space is ~1, v2 and va can now be given once F has been 

a 
V = V, + n ax3 

resolved in the directions al, 82, and n, i.e. in 
directions parallel and normal to the surface at 

a the point (xl, x2, x3). Let 
=Vs+n--+0(x3); 

axa 
(10) no=Aal+Baz+Cn, (16) 
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where A, B and C are scalars defined by in the usual notation [rr rz rre] denotes a triple 

A = nO.al, B -: nO.a2, C --- n0.n. (17) 
scalar product. On using expressions (17), (1X) 
and (19), there results: 

These are evaluated by expanding at, ad and n 
in the form of a Taylor series about the stag- 
nation point x1 :; x2 2: 0; thus if xl and s:! are 
small 

and 

Expressions for the above derivatives are given 
by Weatherburn [7] as follows: 

in a similar fashion it follows that 

aal L 1 c?hl -I - =: _.._ 
3x1 hl n - hi c?x2 a2, 

%a1 M 1 ahl 
~__ = _. n + ~~~ _._ a2, 
8x2 hl hl 8x1 

3a2. M 1 ijhl 
_.. =__” +_ -- 
ax, hz hz ax, a’y 

i3a2 N 1 c3hs 
- = --. n - h; axl al. 
%x2 hz 

The quantities L, M, N are known as funda- 
mental magnitudes of the second order and are 
related to the quantities E, F, G, known as 
fundamental magnitudes of the first order by the 
relations : 

E-rl.rL -&, 

F = rl.r2, 

G = r2.r2 = hi, 

I (20) 
L = [rl r2 rll]/(EG - P)li”, / 

M = [rl r2 rl2]/(EG - F2)1/2 2 I 

N = [rl r2 rss]/(EG - P)r/s. i 

Here the suffix 1 or 2 on r denotes partial 
differentiation with respect to XI or x2, i.e. 

B’(qori -+ (;)oX”f..., (22) 

and finally since n = al x a:! it can be shown 
that 

c= 1 +.... (23) 

Correct to terms of order xl and xs the com- 
ponents of the body force F in the directions of 
the unit vectors al, a2 and n, at a point XI and x2, 
are : 

(;joa 1) (24) 

Consider the n-component of equation (14); 
the principal terms give: 

L 2h4 
p pf + -- UlQ + NV; 2.2 

1 hlhz h’3 
- g - pg. (25) 

Let 

p =j.‘D - Pcogx3, (26) 

wherepD is the ‘dynamic’ pressure and pm g x3 is 
the hydrostatic pressure in the absence of heating. 
It follows from (25) that the variation in pD 
across the boundary layer is small, and it is 
assumed that pB is independent of xs. The al and 
as-components of the momentum equation (14) 
now yield: 



LAMINAR FREE CONVECTION NEAR THE LOWER STAGNATION POINT 867 

p 
i 1 

To within the same order of approximation (see 
[5a]) the equation of continuity is 

-- I)p((~)gr1+ ($x2), 
and 

J and the thermal energy equation (3) becomes: 

(33) 

p 2; + ; .;g + t13 & _ 3; g Finally the boundary conditions are: 
* 

vrvz ahz 
+j& AX1 

> 

iZ%a 1 ap, 
~‘1 = YE = t’s = 0, T = TO when 

= P”~$-~;~x; (28) and 

x3 =o, 

respectively. As ~1 and vs tend to zero at the 
edge of the boundary layer, equations (27) and 
(28) imply : 

1 ap.9 .-. -- = - 
hz axI f-Jag{ ($ x1 + (~jox2) 
and 

1 apD -_---_- 
hz ax2 

Inserting expressions (29) in (27) and (28) and 
using (5) the boundary-layer equations for the 
flow in the vicinity of the stagnation point are: 

These equations are complicated as they in- 
volve quantities related to the geometry of the 
surface such as the fundamental magnitudes of 
the first and second order. As the values of these 
quantities are dependent on the choice of the co- 
ordinate system it does not appear possible to 
infer any general information from the above 
equations in their present form. This difficulty 
can be removed if the parametric lines 
XI = const. and x2 = const. are taken to be 
lines of curvature on the surface. The necessary 
and sufficient conditions for the parametric lines 

-l 
to be lines of curvature are 

and 

(34) 

In the above equations all physical properties are 
to be evaluated at the ambient condition. 

I F=M=O. (35) 

(30) 
Moreover, since the surface is regular at the 
stagnation point, it is permissible to expand hl 
and hz as follows: 

hl = 

hz = 

(31) On substitution of (35) into equations (30) and 
(31) it follows that vl and 02 are of the same order 
as the buoyancy forces, i.e. of 0(x1) or 0(x2). ] Using this fact, and the expansions given in (36), 
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the principal terms of the boundary-layer and 
equations (30) to (33) are: T-- Ta 

@ = To - TX,’ 

Equations (37) to (40) become: 

(38) (45) 

(39) 
(46) 

and 

HO 
Pr 

(40) 

a VI a-kl 

the boundary conditions are: 

Here the su%x 0 on the quantities h7, AZ, E, 

G, L and N has been omitted. Now the principal 
V1 =. V2 = V3 := 0, 0 - 1 when 

radii of curvature at any point on the surface are .YS --- 0, 

expressed in terms of the first and second funda- v1 -- 3, 0, 
(48) 

Va ,’ 0, 0 ~ :, 0 as 
mental magnitudes by the equation: Xa .- I>> co. J 
(LN - A4z) R” + (2MF - LG -- NE) R + Here a = ~,/(~~/R~), Pr = v/k is the Prandtl 

(EC--)=O; (41) 
number and Gr = ,!3g (TO - T,) R;/v2 is the 
Grashof number. 

due to the co-ordinate restriction (35) it is clear 
that E/L and G/N are the two principal radii of 3. SIMILAR SOLUTION OF THE BOUNDARY- 
curvature at the stagnation point. LAYER EQUATIONS 

For convenience, let In terms of the variable 

G 
RI ;;fandRz=_.N, t42) 

71 ___ Gr”” x3, (49) 
. the similar solution of the non-dimensional 

and such that Rz + RI. The boundary-layer boundary-layer equations (44) to (47), subject to 

equations are now made non-dimensional on the boundary conditions (49, is of the form: 

taking Rz, v/R2 and (TO - T *) to be represen- 
tative length, velocity and temperature scales 

VI = Gr’~‘d Xl f’, Vz = Gr1’4 X2 g’, 1 

respectively. New dependent and independent v3 = - CR + g> ’ 

r 
(50) 

variables are chosen as follows: and 0 = h, J 

ht XI = Rx XI, ha x2 = Rz X2, sz = Rz X3, 
wheref, g and h are functions of 71 only, and the 
dash denotes differentiation with respect to v. 

Vl, 212 I--” v2, 
These functions satisfy the following non-linear 

RZ 
1’3 = ” V3, 

RZ ordinary differential equations: 

(43) J”” + (g + clf)f” - a (f’>2 + ah = 0, (51) 
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g”’ + (g + af> g” - (g’Y + h = 0, (52) 
and 

h” + Pr (g + af) h’ = 0, (53) 

subject to the boundary conditions: 

f(O) =.f’(O) = g(0) = g’(O), NO) = 1, 
f'(m) = g'(a) = h(m) = 0. I 

(54) 

Equations (51) to (54) define an eighth order 
boundary value problem. They contain the 
parameters: Pr the Prandtl number, and a the 
square root of the ratio of the two principal 
radii of curvature at the stagnation point. There 
are two special cases: 

(i) a = 0, which corresponds to the two-di- 
mensional free convection flow near the stag- 
nation line on a uniform horizontal cylinder. 
In this casef - 0, and 

g”’ + gg” - (g’y2 + h = 0, (54) 

h” + Pr gh’ = 0, (55) 
where 

g(0) = g’(0) = 0, h(0) = I, 

g(m) = h(m) = 0. (56) 
These equations have previously been derived by 
Prins and Merk [2]. In a discussion of Her- 
mann’s approximate solution [S] for the free 
convection flow around a heated horizontal 
cylinder, Chen [9] also notes that a similar 
solution can be found for the lower stagnation 
line. 

(ii) a = 1, which corresponds to the flow near 
the lower stagnation point on a sphere. Here 
g =.f, so that 

g”’ + 2gg” - (8’)” + h = 0, (57) 

and 
h” + 2 Pr gh’ = 0, (58) 

subject to the boundary conditions (56). 

Detailed numerical solutions of the above 
equations have been obtained for Pr = 0.72 and 
a = O($)l. The iterative procedure used to solve 
the non-linear boundary value problem will not 
be discussed as such methods have been ade- 
quately described by Fox [lo]; the actual 
numerical integrations were carried out using 
Gill’s modification of the Runge-Kutta pro- 
cedure on an I.B.M. computer. Iterations were 
performed until there was no change in the 
eighth decimal of the unknown initial values 

f”(O), g”(0) and h’(0); the numerical process 
appeared to be quite stable. In Table 1 the 
unknown characteristics of the equations, 

namely f”(O)la, g”(O), h’(O), f(a)/a, g(a) and 
[g(cc) + af( co)] are tabulated for Pr = 0.72 
and a = O($)l. When a = 0 the notation f/a in 
Table 1 is used to denote Limitf/a. 

a- >0 

4. APPROXIMATE SOLUTIONS OF THE 

BOUNDARY-LAYER EQUATIONS 

It is found that the functions f, g and h vary 
most near a = 0. This feature, as will be later 
discussed, indicates how rapidly the free con- 
vection flow at a two dimensional stagnation 
point (a = 0) is affected by the presence of 
secondary flow (a > 0). Hence further infor- 
mation on flows for small a is desirable. Such 
information can be obtained on evaluation of 
series expansions for f, g and h valid for small a. 
However an approximate method of solution 
has been used which provides such information, 

a 

f “(W 
g”(O) 
--h’(O) 

f(a>la 
g(m) 
g(m) -bh;fc;o) 

-A=)) +maf@l 

0 : 9 

1.08156 1.02881 0.929829 0.838737 0.764632 
0.856045 0.845884 0.822382 0794033 0.764632 
0.374105 0.383791 0406247 0.433526 0.462221 
1.91331 1.70652 1,34349 1.04193 0.822524 
1.33255 1.26007 1.11030 0.956906 0.822524 
1.33255 1.36673 144618 1.54299 1.64505 

028074 0.28081 0.28091 0.28096 0.28098 

Table 1 
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and in fact provides complete information for the 
range 0 < a :.: 1. 

For convenience, let 

.f’-- u I’, g -- G and Ii --- ti. (5% 

Equations (51) to (53) become: 

F”’ + (G -t &? F) F” __ &Z (F’)” 1 

N .-; 0, 

G”’ _j- (G + &2 JF1) G” __ (G’)S _+ fj : 0, 
1! W9 

and 

H” + Pr (a2 F + G) H’ I= 0, J 

where 

F(0) = F’ (0) = G(0) = G’(0) z.- 0, 

H(0) = 1, 

1 

F’(m) = G’( co) == H( co) = 0. 

1 (61) 

J 

Let the soIutions of (60) and (61) be denoted by 
Fo, GO, HO, and Ff G1, HI when a = 0 and 1 

Approximations to F, G and Hare now chosen 
by writing these as a linear combination of the 
exact numerical solutions for a = 0 and 1. Thus 

F = Fo + Al(a) (Fl - Fo), 

G = Go + &(a) (GI - Go), 

} 

(62) 

H = Ho + &(a} (231 - Ho). 

Here the unknown mixing parameters At(a) are 
such that Ai(0) = 0 and At(l) = 1 for i = 1, 2 
and 3. Thus expressions (62) are correct at both 
limits, a desirable characteristic. The A&(a) for 
0 &. a < 1 are evaluated using Pohlhausen’s 
method (see reference [5b]). 

Integrating each equation in (60) between the 
limits 7 = 0 and ~3 and using the boundary 
conditions (61) yields: 

E”(O) - 7 H dq -+- 2a” 7 (F’)” dq --{- ! 
0 ti 

rG’F’d7/ =O, 
I) 

G”(0) - I H drl + 2 7 (G’Y drl + t (63) 
0 

azrG’F’dT -=O, 
0 

H’(0) $- P J” (a2 F’ .-I- G’) H dr) -.-. 0. 
0 

Physically the first two equations can be in- 
terpreted as the integral momentum equations 
for the components of velocity in the XI and s:! 
directions: the third equation is the heat-balance 
integral of the thermal boundary layer. On 
substitution of expressions (62) in (63) three 
non-linear simultaneous algebraic equations arc 
obtained for the At(a), i -~~ 1, 2 and 3. As these 
equations are rather iengthy they will not be 
stated. However certain integrals occurring in 

these equations, such as 7 G(, iI1 dT/, cannot bc 

expressed in terms of thosl obtained from (63) by 
letting a ~~- 0 or 1. Such integrals were evaluated 
by incorporating them as part of the Runge- 
Kutta integration of the system (60) and (61) for 
a = 0 and I, i.e. once the initial values F;‘(O), 
G,“(O) and Hi(O) for i = 1 and 2 are known. 
The simultaneous equations were solved using 
the Choleski method together with a Gauss- 
Seidel iterative scheme for the treatment of the 
quadratic terms involvi[lg Ai( ,42(a) and 
A3(4. 

The mixing parameters A{(a) and the corre- 
sponding results for F”(O), G”(0) and etc. are 
given in Table 2 for a = O(O*OS)l*O and 
Pr = O-72; these results are also given graphically 
in Fig. 1. When a .= t, $ and # it is seen on 
comparing Tables 1 and 2 that the approximate 
results for the derivatives F”(O), G”(0) and 
N’(0) are in error by less than Q per cent; the 
asymptotic values E’( cc), G(x), [ccaQ a) + G( co)] 
are found to be in error by less than 3 per cent. 
Therefore the approximate method is sufficiently 
accurate for all practical purposes and has the 
advantage that detailed reliable information on 
the stagnation point flow on a general curved 
surface is relatively easy to obtain. 

5. RESULTS AND DISCUSSION 
Results of practical interest are the shear 

stress and heat transfer across the surface. On 
the basis of the boundary-layer approximations 
the shearing stress or skin friction across the 
surface has components : 

in the directions of 51 and xo increasing. If Rz 
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Table 2 

a Al AS A3 F”(0) G”(0) -H’(O) F(a) ‘3~) G(m)+a2F(co) 

040 OGOOO 04000 OGOOO 1.0816 0.8560 0.3741 1.9133 1.3326 I .3326 
0.05 OXI 0.0052 0.0053 1.0790 0.8556 0.3745 1.9046 1.3299 1.3347 
0.10 0.0313 0.0203 0.0209 1.0717 0.8542 0.3759 1.8792 1.3222 I.3410 
0.15 0.0680 0.0449 0.0459 1.0600 0.8519 0.3782 1.8391 1.3097 1.3511 
0.20 0.1157 0.0776 0.0795 1 m49 0.8489 0.3811 1.7871 1.2930 1.3645 
0.25 0.1714 0.1175 0.1201 1.0272 0.8453 0.3847 1.7263 1.2726 1.3805 
0.30 0.2325 0.1631 0.1665 1.0079 0.8411 0.3888 1.6597 1.2494 1.3988 
0.35 0.2966 0.2133 0.2176 0.9876 0.8365 0.3933 1.5898 1.2237 1.4185 
0.40 0.3618 0.2672 0.2722 0.9669 0.8316 0.3981 1.5186 1.1963 1.4393 
0.45 0.4269 0.3239 0.3294 0.9463 0.8264 0403 1 14477 1.1674 1.4606 
0.50 0.4907 0.3826 0.3886 0.9260 0.8211 04083 1.3780 1.1374 1.4820 
0.55 0.5527 04427 04490 0.9064 0.8156 0.4137 1.3105 I.1068 1.5032 
0.60 0.6124 0.5039 0.5104 0.8875 0.8100 0.4191 1.2453 1.0756 1.5239 
0.65 0.6696 0.5657 0.5722 0.8694 0.8043 0.4245 1.1830 1.0440 1.5438 
0.70 0.7242 0.6279 0.6341 0.8521 0.7986 0.4300 1.1234 1.0123 1.5628 
0.75 0.7761 0.6903 0.6961 0.8356 0.7930 0.4354 1.0667 0.9805 1.5805 
0.80 0.8256 0.7527 0.7578 0.8199 0.7872 0.4409 1.0127 0.9487 1.5956 
0.85 0.8726 0.8149 0.8191 0.8050 0.7816 0.4463 0.9615 0.9169 1.6116 
0.90 0.9172 0.8769 0.8800 0.7909 0.7759 0.4516 0.9128 0.8853 1.6247 
0.95 0.9596 0.9386 0.9403 0.7774 0.7702 0.4570 0.8665 0.8538 1.6358 
1.00 1+)000 1.0000 1.0000 0.7646 0.7646 0.4622 0.8225 0.8225 1.6450 
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FIG. 1. Flow and heat-transfer characteristics for a stagnation point on a general curved surface. 
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is chosen as the representative length the heat form of the solution of the system of differential 
transfer at the stagnation point may be expressed equations (51) to (53) leads to the result 
in terms of the local Nusselt number 

Limit S’l(‘) =- a, 

(65) 1)->cc R”(7) 
and so 

Thus on using (43), (49) and (50) it follows that 
at the stagnation point 

tan-l [22 (gj]. (70) 

From Table 1 the maximum changes in direc- 
d'(O), (66) tion were evaluated to be 6*7”, 56”, 3.6”, 1*5O 

d 
and 0” for CC = 1/(R2/Rl) = 0(&l respect- 

an ively; the first four of these occurred at stations 
iVuo = GY~‘~ h’(0). (67) a2 (hlxl/hsxz) = 0+39,0-91, O-94 and 0.97 respec- 

Values ofy’(O)/a, g”(0) and h’(0) are given in 
tively. 

Tables 1 and 2 for Pr = 0.72. 
Heat transfer 

Velocity profiles 
As secondary flow increases with increasing 

As CC increases from zero the maximum 
a there is an increase in the inflow velocity 

velocity in the xz-direction decreases slowly 
z’s = - v/R2 [af(m) + g(m)] at the edge of the 

whilst there is a rapid increase in the maximum 
boundary layer (see Fig. 1). An increase in in- 

velocity in the xl-direction, the two components 
flow appears to produce a slight decrease in 

of velocity becoming equal when a = 1. Thus the 
both the thermal and fluid boundary-layer 

secondary flow (or xl-component of flow), 
thicknesses, together with an increase in the 

which is due to curvature in the xl-direction, has 
local Nusseltnumber Nuo = Grl’4h’(0) (see Fig. 1). 

little influence on the main x2-component of 
Actually maximum heat transfer occurs when 

flow. However the occurrence of secondary flow 
a m= 1, i.e. at the lower stagnation point on a 

when a ..., 0 has an observable influence on the 
sphere. Again from Table 1 it is seen that the 

direction of the velocity vector in the boundary 
modulus of the ratio 

layer. For example the angle between the /Local Nusselt number at the stagnation point\ 
velocity vector at the surface and at the edge of Inflow 
the boundary layer is 

velocity domponent ai 
boundary layer 

by L’Hopital’s rule 

= 0.2809 ? Gr1’4 (71) 

approximately, when P = 0.72 and 0 < CC 5; 1. 
Thus once a representative length R2 has been 
chosen the above ratio is independent of RI, as 
it is seen to be nearly independent of the curva- 
ture ratio 

tan-l [E) $${I, (69) CL= 

and thus represents the angle between the From an experimental viewpoint (71) might be 
resultant shear stress on S and at the edge of the exploited as NUO could be evaluated by measur- 
boundary layer. Examination of the asymptotic ing the inflow velocity component for Rz and 
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(TO :jToo) fixed, and for various values of RI. 
A suttable body for experimentation might be 
an anchor ring maintained at constant tempera- 
ture, and whose axis of revolution is horizontal. 

Finally as an illustration of the above theory 
consider the geometrical information required to 
discuss the local stagnation point free con- 
vection flow on an ellipsoid of revolution whose 
equation is 

;;+;+g= 1, (72) 

and whose axis of revolution is horizontal. If 
Ts > T, the lower stagnation point is situated 
at (0, --a, 0). Orthogonal parametric co- 
ordinates are chosen such that (72) is replaced 
by 

r = a cos xi sin x2 i - a cos xi cos x2 j - 

- b sin xi k, (73) 

where i, j and k are unit vectors in the directions 
of the Cartesian co-ordinates x, y and z re- 
spectively; xi = x2 = 0 corresponds to the 
lower stagnation point. The evaluation of (20) 
yields : 

E = a2 sins xi + b2 cos2 x1, 

F=O 

G = u2 co9 Xl, 

(EC F2)“‘L = n2b cos .YI 9 

(EC - F”)“zM = 0, 

(EC - F2)“2N = a26 COG x1. 
J 

As F and M both vanish the chosen parametric 
lines xi = const. and x2 = const. are in fact the 
lines of curvature on the surface; at x1 = x2 = 0, 
LN > M2 and so the stagnation point is an 
elliptic point of the surface. At the stagnation 
point 

E = hf = b2, F = 0, G = hi = a2, 

L = a, M=O, N-a 

and thus 

Ra =a and RI = F, 

giving 

Cl,= 

813 

(75) 

(76) 

(77) 

CC = 0 and 1 correspond to a uniform horizontal 
cylinder and a sphere respectively. 
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RksumC-Cet article a trait a quelques aspects de la couche limite laminaire tridimensionnelle avec 
convection libre pres du point d’arret sur une surface courbe generale isotherme, qui est maintenue 
a une temperature au-dessus de la temperature ambiante du fluide. Ainsi, le point d’arret est detini 
comme le point (elliptique) le plus bas sur la surface et tel que le plan tangent en ce point soit horizontal. 
Les equations de la couche limite sont formulees et on montre que lXcoulement au point d’arrtt 
depend du rapport des deux rayons de courbure principaux en ce point, du nombre de Prandtl et du 
nombre de Grashof. Ces equations sont resolues numeriquement pour un nombre de Prandtl de 0,72 et 
pour differentes valeurs du rapport des deux rayons de courbure principaux. 

Pour le point d’arret, il y a deux cas limites, c’est-a-dire l’ecoulement a la ligne d’arret la plus basse 
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sur un cylindre horizontal uniforme et celui au point d’arr&t le plus bas sur une sphkre. Les solutions 
numeriques pour la sphtre et ie cylindre sont alors utilisCes pour developper une mCthode approchee 
de solution pour le point d’arr@t sur une surface courbe gdnCrale; on a obtenu un bon accord avec 

les solutions numtriques exactes. 

Zusammenfassung-Die Arbeit behandelt einige Gesichtspunkte der dreidimensionalen Grenzschicht 
bei laminarer freier Konvektion nahe dem Staupunkt an einer allgemein gekriimmten, isothermen 
OberfEche, deren Temperatur iiber jener der Umgebung gehalten wird. Dabei ist der Staupunkt als 
der tiefste (elliptische) Punkt der Oberflkhe definiert, so dass die Tangentenebene an diesem Punkt 
horizontal ist. Grenzschichtgleichungen werden aufgestellt und es wird gezeigt, dass die Strijmung 
am Staupunkt, vom Verhlltnis der zwei Hauptkriimmungsradien an diesem Punkt, der Prandtl-Zahl 
und der Grashof-Zahl abhlngt. Diese Gleichungen werden numerisch geliist fiir die Prandtl-ZahlO,72 
und fiir verschiedene Verhsltniswerte der beiden Hauptkriimmungsradien. 

Fiir die Staupunktsstriimung existieren zwei Grenzfglle-nlmlich die StrGmung an der unteren 
Staulinie eines gleichf6rmigen, waagerechten Zylinders und die StrGmung am unteren Staupunkt 
einer Kugel. Die numerischen Liisungen fiir Kugel und Zylinder kiinnen dazu dienen, eine angenaherte 
LGsungsmethode fiir den Staupunkt einer allgemein gekriimmten Oberfilche zu entwickeln; gute 

ubereinstimmung mit den genauen numerischen LGsungen wird erreicht. 

hHOTaq~JI-~aIIIralI CTaTbFl pacl’MUTplII3aeT HeliOTOIlbIe ilCIIeIETL1 TpexMepIlWO ;r:IMlllIElp- 

IlOP norpalilIwlor0 CJIOH npH CIlOh~{llOii I~OltIll~IiI~ll~l ll6Jlll:11I l<pliTll~IP(:l~Oii TO’Ilill Ii:1 IlpOll:l- 

IlOJIbHOii HpImonm~etiHoii II:IOTepMH~IeCKOii IIOBC~XI~~CTL~, KOTOpaFl IIOfi~epWiIlS?TCJI III’H 

TeMIICpaType, BbIlIle ~e~nepaTyp14 0liyXaroqeti ~<lf~i~oCTli. ‘~EIKIIM OlipWOM, I~pI4TWltY’IiklFI 

Towa 0npeAenfleTcfI I<aIc caMan IIII~IRFI (3nJIAIITwIecIian) Toqtsa IIa noRepxIrocTir Tw, wo 

IiacaTenbnaR IInowocrb II 3Toi2 TOWie nwIneTcR ropanoIITanbuoir. @Op~ya~pyH)Tcn ypanrre- 
1im3 norpamiqnoro c.ilO~. IIoI~asarIo, ‘IT0 IIOTOK I3 KpIITWJeCI<Ofi T04Re 3aIlRCHT OT OTIIOIIIetllllI 

,TISyX OCIIOBHLIX paAHyCoB XpEIIlI13HbI B DTOii TOWe, wcna DpaIIgTnff EI wic~la Fpacro@. 

aTH YpaBHeHHR peruaIoTCH 4nCneIIIio R,nFI Pr = 0,72 II !KJIR pa:nIl4sHLIx 3Ha’reHMti OTHOIIIelII4R 

ZByX OCHOBHbIX paJJLlyCOB KpIIBLKlHbI. 

fiJIfI IIOTOHa B IFpMTRseCKoa TOYK;e CjW@CTByeT gsa npene,?bHbIx cmygaH, a IlMeHIlo : IIOTOIi 

B HLIWHeti KpHTWIeCKOti TOYIce IIa O~HO~~O~I~O~VI ~Opl1:~0HTaJIbIIOY ql’I;IkiHfipe M IIOTOIC Il HHWHeii 

tEpHTwleCICOli TOqKe IIa Irrape. %TCM, ~mc~enmde pemerrlin AJIR IIIapa II l~nj?EiH~pa 1ic110- 

JIbRJWTCR JKJIH IIOCTpOeIIHfI IIpIi6JIIW’IIHOI~O MeToda pelueirafl K~‘“TWleC”OI? TO’IIEII lla rrpo- 

lVlIlO,~bIIOti I;~~I~O~IlIllPiilIO~ IlORe~‘XIlOCTlI. I~O.?lJWlIO X0~““““’ ~‘O~,i1;l1‘0RAlilIl! (! TO’IIIIdMII 

w~~.~~wmn~ II p~‘ilIeminni II. 


